
B.Tech-2nd
Year

Session
2023-24

Odd/Even
Semester

DIGITAL SYSTEM DESIGN /DIGITAL SYSTEM DESIGN /
DIGITAL ELECTRONICSDIGITAL ELECTRONICS

app.gradamic.com

RADAMIC

Dr. A. P. J. Abdul Kalam Technical University
Lucknow, Uttar Pradesh

(BOE 310 / BOE 310H /
 BOE 410 / BOE 410H)

UNIT - 1st

http://app.gradamic.com/
http://app.gradamic.com/

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

UNIT-I
LOGIC SIMPLIFICATION AND COMBINATIONAL LOGIC DESIGN

 Number System
 Binary Arithmetic
 Signed Magnitude Representation
 Binary Codes
 Code Conversion
 Review Of Boolean Algebra and De-morgan’s Theorem
 SOP & POS Forms
 Canonical Form
 Karnaugh Maps up to 5 Variables.

DIGITAL SYSTEMS

Any system which takes digital inputs and process the given data and gives the output are digital systems.
Signals represented in the form of 1’s and 0’s are called digital signals.

These signals are also used to transfer information in encoded form, to prevent any casualities of mishappening
with the information.

ADVANTAGES OF DIGITAL SYSTEMS

 Digital systems are more accurate and reliable than analog signals.
 Digital systems can be easily stored, processed, and transmitted.
 As they are easy to represent with 1’s and 0’s.
 Digital electronics are more precise and can perform more complex operations than analog electronics.
 Digital electronics are more efficient as they can perform same operations in less amount of power as

compare to analog electronics.

APPLICATIONS OF DIGITAL ELECTRONICS

 Communication
 Business Transaction
 Traffic control
 Spacecraft Guidance
 Medical Treatment
 Military
 Generality
 Ability to represent & manipulate discrete elements of information

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

NUMBER SYSTEMS

 There are 7 types of number systems:

1) Decimal Number Systems: The number having Base 10 are known as decimal number systems.

Symbols that are used in this are 0 to 9.

2) Binary Number System: The number having Base 2 are known as decimal number systems.

Symbols that are used in this are 0 and 1.

3) Octal Number system: The number having Base 8 are known as decimal number systems.

Symbols that are used in this are 0 to 7.

4) Hexadecimal Number System: The number having Base 16 are known as decimal number systems.

Symbols that are used in this are 0 to 9 and A to F & they are - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

5) Excess-3 Code: Excess-3 is a binary coded decimal (BCD) code with unquestionable significance, seen
for its work in enhancing number suffling task in early enlisting structures and smaller-than-expected
PCs.

6) Gray Code: Gray code is a form of binary that uses a different method of incrementing from one
number to the next. With Gray Code, only one bit changes state from one position to another. This
feature allows a system designer to perform some error checking (i.e., if more than 1 bit changes, the
data must be incorrect).

 DECIMAL DIGIT BCD CODES EXCESS-3 CODE

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

SIGNED MAGNITUDE REPRESENTATIONS

Signed magnitude is a convention in which we express a decimal number as a positive or negative binary
number using its most significant bit.

The most significant bit is the left-most bit, which represents the sign of a binary digit. If it’s ZERO (0) then it’s
positive, and if it’s ONE (1) then it represents a negative number.

FOR EXAMPLE:

For a 4 bit representation of decimal number 4 we use 0100 (4-bits) but in signed magnitude representation
we use 5 bits :-

1) If it is positive then we use the Most significant bit as a sign bit i.e. “00100”. Here the left most bit (0)
is known as the Sign bit.

2) If it is negative then we use the Most significant bit as a sign bit i.e. “10100”. Here the left most bit (1)
is known as the Sign bit.

BINARY TO DECIMAL CONVERSION

For converting any number from binary to decimal we have to multiply the digits of that binary number with
the position of that number in the power of 2.

decimal = d0×20 + d1×21 + d2×22 + ...

FOR EXAMPLE:

1) 1110012 = 1⋅25+1⋅24+1⋅23+0⋅22+0⋅21+1⋅20 = 5710

2) 11012 = 1×23+1×22+0×21+1×20 = 1310

More questions are in Practice Set.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

DECIMAL TO BINARY CONVERSION

1) Convert 1310 to binary:

Division
by 2

Quotient Remainder Bit #

13/2 6 1 0

6/2 3 0 1

3/2 1 1 2

1/2 0 1 3

 So (13)10 = (1101)2

2) Convert 17410 to binary:

Division
by 2 Quotient Remainder Bit #

174/2 87 0 0

87/2 43 1 1

43/2 21 1 2

21/2 10 1 3

10/2 5 0 4

5/2 2 1 5

2/2 1 0 6

1/2 0 1 7

 So (174)10 = (10101110)2

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

DECIMAL TO OCTAL CONVERSION

1) Convert 756210 to octal:

Division
by 8

Quotient
(integer)

Remainder
(decimal)

Remainder
(octal)

Digit #

7562/8 945 2 2 0

945/8 118 1 1 1

118/8 14 6 6 2

14/8 1 6 6 3

1/8 0 1 1 4

 So (7562)10 = (16612)8

2) Convert 3563110 to octal:

Division
by 8 Quotient

Remainder
(decimal)

Remainder
(octal) Digit #

35631/8 4453 7 7 0

4453/8 556 5 5 1

556/8 69 4 4 2

69/8 8 5 5 3

8/8 1 0 0 4

1/8 0 1 1 5

 So (35631)10 = (105457)8

BOOLEAN ALGEBRA & DE MORGAN’S THEOREM

It is a very powerful tool used in digital design. This theorem explains that the complements of the products
of all the terms are equal to the sums of the complements of each and every term.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

DeMorgan’s Theorem

DeMorgan’s theorem may be thought of in terms of breaking a long bar symbol.

When a long bar is broken, the operation directly underneath the break changes from addition to
multiplication, or vice versa, and the broken bar pieces remain over the individual variables. To illustrate:

When multiple “layers” of bars exist in an expression, you may only break one bar at a time, and it is
generally easier to begin simplification by breaking the longest (uppermost) bar first.

To illustrate, let’s take the expression (A + (BC)’)’ and reduce it using DeMorgan’s Theorems:

SOP vs POS in Digital Logic: Difference between SOP and POS in Digital Logic :-

The major difference between SOP and POS is that the SOP represents a Boolean expression through
minterms, while POS defines a Boolean expression through max terms.

What is SOP?

SOP stands for Sum of Product. SOP form is a set of product(AND) terms that are summed(OR) together.
When an expression or term is represented in a sum of binary terms known as minterms and sum of
products.

What is POS?

POS stands for Product of Sum. A technique of explaining a Boolean expression through a set of max terms
or sum terms, is known as POS(product of sum).

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Difference between SOP & POS in Digital Logic

S.No. SOP POS

1 SOP stands for Sum of Products. POS stands for Product of Sums.

2 It is a technique of defining the boolean
terms as the sum of product terms.

It is a technique of defining boolean
terms as a product of sum terms.

3 It prefers minterms. It prefers maxterms.

4 In the case of SOP, the minterms are
defined as ‘m’.

In the case of POS, the Maxterms are
defined as ‘M’

5 It gives HIGH(1) output. It gives LOW(0) output.

6 In SOP, we can get the final term by adding
the product terms.

In POS, we can get the final term by
multiplying the sum terms.

CANONICAL FORM

We will get four Boolean product terms by combining two variables x and y with logical AND operation.

These Boolean product terms are called as min terms or standard product terms.

The min terms are x’y’, x’y, xy’ and xy.

Similarly, we will get four Boolean sum terms by combining two variables x and y with logical OR operation.

These Boolean sum terms are called as Max terms or standard sum terms.

The Max terms are x + y, x + y’, x’ + y and x’ + y’.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

The following table shows the representation of min terms and MAX terms for 2 variables.

x y Min terms Max terms

0 0 m0=x’y’ M0=x + y

0 1 m1=x’y M1=x + y’

1 0 m2=xy’ M2=x’ + y

1 1 m3=xy M3=x’ + y’

If the binary variable is ‘0’, then it is represented as complement of variable in min term and as the variable
itself in Max term. Similarly, if the binary variable is ‘1’, then it is represented as complement of variable in
Max term and as the variable itself in min term.

From the above table, we can easily notice that min terms and Max terms are complement of each other. If
there are ‘n’ Boolean variables, then there will be 2n min terms and 2n Max terms.

CANONICAL SOP & POS FORMS

A truth table consists of a set of inputs and outputs𝑠. If there are ‘n’ input variables, then there will be
2n possible combinations with zeros and ones. So the value of each output variable depends on the
combination of input variables. So, each output variable will have ‘1’ for some combination of input variables
and ‘0’ for some other combination of input variables.

Therefore, we can express each output variable in following two ways.

 Canonical SoP form
 Canonical PoS form

CANONICAL SOP FORM

Canonical SoP form means Canonical Sum of Products form. In this form, each product term contains all
literals. So, these product terms are nothing but the min terms.

Hence, canonical SoP form is also called as sum of min terms form.

First, identify the min terms for which, the output variable is one and then do the logical OR of those min
terms in order to get the Boolean expression function𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 corresponding to that output variable.

This Boolean function will be in the form of sum of min terms.

Follow the same procedure for other output variables also, if there is more than one output variable.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Consider the following truth table.

Inputs Output

p q r f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Here, the output f𝑓 is ‘1’ for four combinations of inputs. The corresponding min terms are p’qr, pq’r, pqr’,
pqr. By doing logical OR of these four min terms, we will get the Boolean function of output f𝑓.

Therefore, the Boolean function of output is, f = p’qr + pq’r + pqr’ + pqr. This is the canonical SoP form of
output, f. We can also represent this function in following two notations.

f=m3+m5+m6+m7𝑓=𝑚3+𝑚5+𝑚6+𝑚7

f=∑m(3,5,6,7)𝑓=∑𝑚(3,5,6,7)

In one equation, we represented the function as sum of respective min terms. In other equation, we used
the symbol for summation of those min terms.

CANONICAL POS FORM

Canonical PoS form means Canonical Product of Sums form. In this form, each sum term contains all literals.
So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as product of
Max terms form.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

First, identify the Max terms for which, the output variable is zero and then do the logical AND of those Max
terms in order to get the Boolean expression function𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 corresponding to that output variable. This
Boolean function will be in the form of product of Max terms.

Follow the same procedure for other output variables also, if there is more than one output variable.

Example

Consider the same truth table of previous example. Here, the output f𝑓 is ‘0’ for four combinations of inputs.
The corresponding Max terms are p + q + r, p + q + r’, p + q’ + r, p’ + q + r. By doing logical AND of these four
Max terms, we will get the Boolean function of output f𝑓.

Therefore, the Boolean function of output is, f = p+q+r𝑝+𝑞+𝑟.p+q+r′𝑝+𝑞+𝑟′.p+q′+r𝑝+𝑞′+𝑟.p′+q+r𝑝′+𝑞+𝑟. This
is the canonical PoS form of output, f. We can also represent this function in following two notations.

f=M0.M1.M2.M4𝑓=𝑀0.𝑀1.𝑀2.𝑀4

f=∏M(0,1,2,4)𝑓=∏𝑀(0,1,2,4)

In one equation, we represented the function as product of respective Max terms. In other equation, we
used the symbol for multiplication of those Max terms.

The Boolean function, f = p+q+r𝑝+𝑞+𝑟.p+q+r′𝑝+𝑞+𝑟′.p+q′+r𝑝+𝑞′+𝑟.p′+q+r𝑝′+𝑞+𝑟 is the dual of the Boolean
function, f = p’qr + pq’r + pqr’ + pqr.

Therefore, both canonical SoP and canonical PoS forms are Dual to each other. Functionally, these two forms
are same. Based on the requirement, we can use one of these two forms.

STANDARD SOP & POS FORM

We discussed two canonical forms of representing the Boolean outputs𝑠. Similarly, there are two standard
forms of representing the Boolean outputs𝑠. These are the simplified version of canonical forms.

 Standard SoP form
 Standard PoS form

We will discuss about Logic gates in later chapters. The main advantage of standard forms is that the number
of inputs applied to logic gates can be minimized. Sometimes, there will be reduction in the total number of
logic gates required.

STANDARD SOP FORM

Standard SoP form means Standard Sum of Products form.

In this form, each product term need not contain all literals. So, the product terms may or may not be the
min terms. Therefore, the Standard SoP form is the simplified form of canonical SoP form.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

We will get Standard SoP form of output variable in two steps.

 Get the canonical SoP form of output variable
 Simplify the above Boolean function, which is in canonical SoP form.

Follow the same procedure for other output variables also, if there is more than one output variable.
Sometimes, it may not possible to simplify the canonical SoP form. In that case, both canonical and standard
SoP forms are same.

Example

Convert the following Boolean function into Standard SoP form.

f = p’qr + pq’r + pqr’ + pqr

The given Boolean function is in canonical SoP form. Now, we have to simplify this Boolean function in order
to get standard SoP form.

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean
variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more times.

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms.

⇒ f = qrp′+p𝑝′+𝑝 + prq′+q𝑞′+𝑞 + pqr′+r𝑟′+𝑟

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis.

⇒ f = qr11 + pr11 + pq11

Step 4 − Use Boolean postulate, x.1 = x for simplifying above three terms.

⇒ f = qr + pr + pq

⇒ f = pq + qr + pr

This is the simplified Boolean function. Therefore, the standard SoP form corresponding to given canonical
SoP form is f = pq + qr + pr

STANDARD POS FORM

Standard PoS form means Standard Product of Sums form.

In this form, each sum term need not contain all literals. So, the sum terms may or may not be the Max
terms. Therefore, the Standard PoS form is the simplified form of canonical PoS form.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

We will get Standard PoS form of output variable in two steps.

 Get the canonical PoS form of output variable
 Simplify the above Boolean function, which is in canonical PoS form.

Follow the same procedure for other output variables also, if there is more than one output variable.
Sometimes, it may not possible to simplify the canonical PoS form.

In that case, both canonical and standard PoS forms are same.

Example

Convert the following Boolean function into Standard PoS form.

f = p+q+r𝑝+𝑞+𝑟.p+q+r′𝑝+𝑞+𝑟′.p+q′+r𝑝+𝑞′+𝑟.p′+q+r𝑝′+𝑞+𝑟

The given Boolean function is in canonical PoS form. Now, we have to simplify this Boolean function in order
to get standard PoS form.

Step 1 − Use the Boolean postulate, x.x = x. That means, the Logical AND operation with any Boolean
variable ‘n’ times will be equal to the same variable. So, we can write the first term p+q+r two more times.

⇒ f = p+q+r𝑝+𝑞+𝑟.p+q+r𝑝+𝑞+𝑟.p+q+r𝑝+𝑞+𝑟.p+q+r′𝑝+𝑞+𝑟′.p+q′+r𝑝+𝑞′+𝑟.p′+q+r𝑝′+𝑞+𝑟

Step 2 − Use Distributive law, x + y.z𝑦.𝑧 = x+y𝑥+𝑦.x+z𝑥+𝑧 for 1st and 4th parenthesis, 2nd and 5th parenthesis,
3rd and 6th parenthesis.

⇒ f = p+q+rr′𝑝+𝑞+𝑟𝑟′.p+r+qq′𝑝+𝑟+𝑞𝑞′.q+r+pp′𝑞+𝑟+𝑝𝑝′

Step 3 − Use Boolean postulate, x.x’=0 for simplifying the terms present in each parenthesis.

⇒ f = p+q+0𝑝+𝑞+0.p+r+0𝑝+𝑟+0.q+r+0𝑞+𝑟+0

Step 4 − Use Boolean postulate, x + 0 = x for simplifying the terms present in each parenthesis

⇒ f = p+q𝑝+𝑞.p+r𝑝+𝑟.q+r𝑞+𝑟

⇒ f = p+q𝑝+𝑞.q+r𝑞+𝑟.p+r𝑝+𝑟

This is the simplified Boolean function.

Therefore, the standard PoS form corresponding to given canonical PoS form is f = p+q𝑝+𝑞.q+r𝑞+𝑟.p+r𝑝+𝑟.

This is the dual of the Boolean function, f = pq + qr + pr.

Therefore, both Standard SoP and Standard PoS forms are Dual to each other.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

KARNAUGH MAP (K MAP)

In numerous digital circuits and other practical problems, finding expressions that have minimum variables
becomes a prerequisite. In such cases, minimisation of Boolean expressions is possible that have 3, 4
variables. It can be done using the Karnaugh map without using any theorems of Boolean algebra.

The K-map can easily take two forms, namely, Sum of Product or SOP and Product of Sum or POS, according
to what we need in the problem. K-map is a representation that is table-like, but it gives more data than the
TRUTH TABLE. Fill a grid of K-map with 1s and 0s, then solve it by creating various groups.

Solving an Expression Using K-Map

Here are the steps that are used to solve an expression using the K-map method:

1. Select a K-map according to the total number of variables.

2. Identify maxterms or minterms as given in the problem.

3. For SOP, put the 1’s in the blocks of the K-map with respect to the minterms (elsewhere 0’s).

4. For POS, putting 0’s in the blocks of the K-map with respect to the maxterms (elsewhere 1’s).

5. Making rectangular groups that contain the total terms in the power of two, such as 2,4,8 ..(except 1) and
trying to cover as many numbers of elements as we can in a single group.

6. From the groups that have been created in step 5, find the product terms and then sum them up for the
SOP form.

SOP FORM

1. 3 variables K-map:

Z = ∑P, Q, R (1, 3, 6, 7)

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

From the red group, the product term would be —

P’R

From the green group, the product term would be —

PQ

If we sum these product terms, then we will get this final expression (P’R + PQ)

2. 4 variables K-map:

F (A, B, C, D) = ∑(0, 2, 5, 7, 8, 10, 13, 15)

From the red group, the product term would be —

BD

From the lilac group, the product term would be —

B’D’

If we sum these product terms, then we will get this final expression (BD + B’D’)

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

POS FORM

1. 3 variables K-map

F (P, Q, R) = π(0,3,6,7)

From the lilac group, the terms would be

P Q

If we take the complement of these two

P’ Q’

And then sum up them

(P’ + Q’)

From the blue group, the terms would be

B R

When we take the complement of these terms

B’ R’

And then sum them up

(B’ + R’)

From the red group, the terms would be

P’ Q’ R’

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

If we take the complement of the two terms

P Q R

And then sum them up

(P + Q + R)

If we take the product of these three terms, then we will get this final expression –

(P’ + Q’) (P’ + R’) (P + Q + R)

2. 4 variables K-map

F (P, Q, R, S) = π (3, 5, 7, 8, 10, 11, 12, 13)

From the blue group, the terms would be

R’ S Q

We take their complement and then sum them

(R + S’+ Q’)

From the purple group, the terms would be

R S P’

We take their complement and then sum them

(R’ + S’+ P) S

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

From the red group, the terms would be

P R’ S’

We take their complement and then sum them

(P’ + R + S)

From the lilac group, the terms would be

P Q’ R

We take their complement and then sum them

(P’ + Q + R’)

Finally, we will express these in the form of the product –

(R + S’+ Q’).(R’ + S’+A).(P’+ R + S).(P’+ Q + R’)

Pitfall – Always remember that POS ≠ (SOP)’

*Here, the correct form would be (POS of F) = (SOP of F’)’

Creating 5 Variable K Map

Rules to be followed while creating 5 variable K map

 If a function is given in compact canonical SOP (Sum of Products) form, we write "1" in the
corresponding cell numbers for each minterm (provided in the question). For example, for summation
of (0, 1, 5, 7, 30, 31), we will write "1" for cell numbers (0, 1, 5, 7, 30, and 31).

 If a function is given in compact canonical POS (Product of Sums) form, we write "0" in the
corresponding cell numbers for each maxterm (provided in the question). For example, for products
of (0, 1, 5, 7, 30, 31), we will write "0" for cell numbers (0, 1, 5, 7, 30, and 31).

Steps to be followed while creating 5 variable K map

 In the K-Map, create the largest possible size subcube that covers all the marked 1’s in the case of SOP
or all the marked 0’s in the case of POS. It should be noted that each subcube can only contain terms
with powers of two. A subcube of 2^m cells is also possible if and only if each cell in that subcube has
a "m" number of adjacent cells.

 All Essential Prime Implicants (EPIs) must be present in the minimal expressions.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Solving the SOP function

For a clear understanding, let us solve the example of SOP function minimization of5 variable K Map using
the following expression : summation of (0, 2, 4, 7, 8, 10, 12, 16, 18, 20, 23, 24, 25, 26, 27, 28) In the above K-
Map we have 4 subcubes:

 Subcube 1: The one marked in red comprises cells (0, 4, 8, 12, 16, 20, 24, 28)

 Subcube 2: The one marked in blue comprises cells (7, 23)

 Subcube 3: The one marked in pink comprises cells (0, 2, 8, 10, 16, 18, 24, 26)

 Subcube 4: The one marked in yellow comprises cells (24, 25, 26, 27)

Now, while writing the minimal expression of each of the subcubes, we will search for the literal that is
common to all the cells present in that subcube.

Finally, the minimal expression of the given boolean Function can be expressed as follows:

Solving the POS function

Now, let us solve the example of POS function minimization of a5 variable K Map using the following
expression: prod. of (0, 2, 4, 7, 8, 10, 12, 16, 18, 20, 23, 24, 25, 26, 27, 28) In the above K-Map we have 4
subcubes:

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Now, while writing the minimal expression of each of the subcubes, we will search for the literal that is
common to all the cells present in that subcube.

Finally, the minimal expression of the given boolean Function can be expressed as follows:

NOTE:

For the5 variable K Map, the Range of the cell numbers will be from 0 to 2^5 -1 i.e., 0 to 31.
The above-mentioned term “Adjacent Cells” means “any two cells that differ in only one variable”.

Grouping and Simplification

Grouping is a critical step in K-Map simplification. The goal is to identify adjacent cells with the same output
value and form groups that cover as many cells as possible, preferably in powers of two (1, 2, 4, 8, etc.). The
groups should be rectangular in shape and can wrap around the edges of the K-Map if necessary.

After forming groups, we express the simplified Boolean expression by combining the variables that remain
constant within each group. We use the Boolean OR operation (+) to combine these groups, and the result
represents the simplified expression.

HANDLING DON’T CARE CONDITIONS

Using 5-Variable K Maps in Circuit Design

The ultimate goal of K-Map simplification is to design more efficient digital circuits. The simplified Boolean
expression obtained from the K-Map helps in creating a logic circuit with fewer gates and lower power
consumption. This leads to more cost-effective and reliable designs.

To implement the simplified expression, we use logic gates like AND, OR, and NOT gates to build the circuit.
Utilizing the minimized expression reduces propagation delays and minimizes the chances of glitches or
errors in the circuit’s output.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Conclusion
Five Variable K Maps are a valuable tool in digital circuit design, allowing designers to simplify complex
Boolean expressions and create more efficient logic circuits. By understanding the principles of K Maps, how
to create them, and how to group cells for simplification, you can effectively design digital circuits with fewer
gates, lower power consumption, and improved reliability. Mastering K Maps is a crucial skill for digital circuit
designers and engineers, as it enables them to optimize circuit designs and create high-performance
systems.

UNIVERSAL LOGIC GATES – NAND & NOR GATES

NAND Universal Logic Gate
The NAND is a universal gate. It can be used to create any other type of logic gate. Here are the techniques
for implementing fundamental gates using NAND gates:

AND Gate Using NAND Gate
You require two NAND gates to create an AND Gate.

 In the first NAND gate, the outcome is the inverse of the logical AND operation between the two
inputs.

 The second NAND gate then inverts the output from the first gate, thus producing the original AND
logic.

A NAND gate is employed as an AND gate by inverting its inputs and output. The outcome replicates the
behavior of an AND gate, where only when both inputs are 1 does the output become 0 due to the inversion.

OR Gate Using NAND Gate
Constructing an OR gate involves three NAND gates.

 The first NAND gate produces the inverse of the first input.

 The second NAND gate generates the inverse of the second input.

 The third NAND gate computes the logical OR of the outputs from the first two NAND gates.

A NAND gate is used as an OR gate by inverting its inputs and output. The result is that when both inputs are
0, the NAND gate outputs 1, simulating an OR gate’s behavior.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

NOR Gate Using NAND Gate
A NOR gate with inputs A and B can be constructed using three NAND gates as follows:

First NAND Gate
 Connect inputs A and B to the two inputs of the first NAND gate.

 The output of the first NAND gate will be A NAND B (A.B) since NAND is the complement of AND.

Second NAND Gate
 Connect the output of the first NAND gate (A.B) to both inputs of the second NAND gate.

 The output of the second NAND gate will be the complement of A.B, which is ¬(A.B).

Third NAND Gate
 Connect the outputs of the first and second NAND gates to the two inputs of the third NAND gate.

 The output of the third NAND gate will be ¬(A.B) NAND ¬(A.B), which simplifies to ¬(A.B).

An XNOR gate can be implemented using NAND gates –

XNOR Gate Using NAND Gate
 The first NAND gate takes the inputs A and B and inverts them.

 The second NAND gate takes the inverted inputs and performs an OR operation.

 The third NAND gate takes the output of the second NAND gate and inverts it again.

The output of the third NAND gate is the output of the XNOR gate.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

XOR Gate Using NAND Gate
Building an XOR gate requires four NAND gates.

 The first two NAND gates produce the inverse of the respective inputs.

 The third NAND gate computes the logical AND of the outputs from the first two NAND gates.

 The fourth NAND gate inverts the output of the third NAND gate, resulting in the XOR operation.

NOR Universal Logic Gate
The NOR gate is also a universal gate and can be used to create any other kind of logic gate. Below are the
methodologies for implementing fundamental gates using NOR gates:

AND Gate Using NOR Gate
Three NOR gates are required to construct an AND gate.

 The first NOR gate’s output is the inverse of the logical OR operation between the two inputs.

 The second NOR gate inverts the output of the first NOR gate, resulting in the original AND logic.

OR Gate Using NOR Gate
An OR gate can be created using two NOR gates, as demonstrated.

 The output of the first NOR gate is the complement of each input.

 The second NOR gate computes the logical OR of the outputs from the first NOR gate.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

NAND Gate Using NOR Gate
A NAND gate can be implemented using NOR gates.

1. The first NOR gate takes the input A and inverts it.

2. The second NOR gate takes the input B and inverts it.

3. The third NOR gate takes the outputs of the first two NOR gates and performs an OR operation.

4. The output of the third NOR gate is the output of the NAND gate.

XNOR Gate using NOR Gate

 The first NOR gate takes the inputs A and B and inverts them.

 The second NOR gate takes the inverted inputs and performs an OR operation.

 The third NOR gate takes the output of the second NOR gate and inverts it again.

The output of the third NOR gate is the output of the XNOR gate.

XOR Gate Using NOR Gate
An XOR gate can be implemented using 3 NOR gates –

 The 1st NOR gate takes the inputs A and B and inverts them.

 The 2nd NOR gate takes the inverted inputs and inverts them again.

 The 3rd NOR gate takes the outputs of the first two NOR gates and performs a NOR operation.

The output of the third NOR gate is the output of the XOR gate.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

QUINE – McCLUSKEY TABULAR METHOD

Procedure of Quine-McCluskey Tabular Method

Follow these steps for simplifying Boolean functions using Quine-McClukey tabular method.

Step 1 − Arrange the given min terms in an ascending order and make the groups based on the number of
ones present in their binary representations. So, there will be at most ‘n+1’ groups if there are ‘n’ Boolean
variables in a Boolean function or ‘n’ bits in the binary equivalent of min terms.

Step 2 − Compare the min terms present in successive groups. If there is a change in only one-bit position,
then take the pair of those two min terms. Place this symbol ‘_’ in the differed bit position and keep the
remaining bits as it is.

Step 3 − Repeat step2 with newly formed terms Ɵll we get all prime implicants.

Step 4 − Formulate the prime implicant table. It consists of set of rows and columns. Prime implicants can be
placed in row wise and min terms can be placed in column wise. Place ‘1’ in the cells corresponding to the
min terms that are covered in each prime implicant.

Step 5 − Find the essenƟal prime implicants by observing each column. If the min term is covered only by one
prime implicant, then it is essential prime implicant. Those essential prime implicants will be part of the
simplified Boolean function.

Step 6 − Reduce the prime implicant table by removing the row of each essenƟal prime implicant and the
columns corresponding to the min terms that are covered in that essential prime implicant. Repeat step 5 for
Reduced prime implicant table. Stop this process when all min terms of given Boolean function are over.

For Example:

Let us simplify the following Boolean function,

f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15)

𝑓(𝑊,𝑋,𝑌,𝑍)=∑𝑚(2,6,8,9,10,11,14,15)

using Quine-McClukey tabular method.

The given Boolean function is in sum of min terms form. It is having 4 variables W, X, Y & Z.

The given min terms are 2, 6, 8, 9, 10, 11, 14 and 15. The ascending order of these min terms based on the
number of ones present in their binary equivalent is 2, 8, 6, 9, 10, 11, 14 and 15.

The following table shows these min terms and their equivalent binary representations.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Group Name Min terms W X Y Z

GA1
2 0 0 1 0

8 1 0 0 0

GA2

6 0 1 1 0

9 1 0 0 1

10 1 0 1 0

GA3
11 1 0 1 1

14 1 1 1 0

GA4 15 1 1 1 1

The given min terms are arranged into 4 groups based on the number of ones present in their binary
equivalents.

The following table shows the possible merging of min terms from adjacent groups.

Group Name Min terms W X Y Z

GB1

2,6 0 - 1 0

2,10 - 0 1 0

8,9 1 0 0 -

8,10 1 0 - 0

GB2
6,14 - 1 1 0

9,11 1 0 - 1

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

10,11 1 0 1 -

10,14 1 - 1 0

GB3
11,15 1 - 1 1

14,15 1 1 1 -

The min terms, which are differed in only one-bit position from adjacent groups are merged.

That differed bit is represented with this symbol, ‘-‘.

In this case, there are three groups and each group contains combinations of two min terms.

The following table shows the possible merging of min term pairs from adjacent groups.

Group Name Min terms W X Y Z

GB1

2,6,10,14 - - 1 0

2,10,6,14 - - 1 0

8,9,10,11 1 0 - -

8,10,9,11 1 0 - -

GB2
10,11,14,15 1 - 1 -

10,14,11,15 1 - 1 -

The successive groups of min term pairs, which are differed in only one-bit position are merged. That
differed bit is represented with this symbol, ‘-‘.

In this case, there are two groups and each group contains combinations of four min terms.

Here, these combinations of 4 min terms are available in two rows.

So, we can remove the repeated rows. The reduced table after removing the redundant rows is shown
below.

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

Group Name Min terms W X Y Z

GC1 2,6,10,14 - - 1 0

 8,9,10,11 1 0 - -

GC2 10,11,14,15 1 - 1 -

Further merging of the combinations of min terms from adjacent groups is not possible, since they are
differed in more than one-bit position.

There are three rows in the above table. So, each row will give one prime implicant. Therefore, the prime
implicants are YZ’, WX’ & WY.

The prime implicant table is shown below.

Min terms / Prime
Implicants

2 6 8 9 10 11 14 15

YZ’ 1 1 1 1

WX’ 1 1 1 1

WY 1 1 1 1

The prime implicants are placed in row wise and min terms are placed in column wise. 1s are placed in the
common cells of prime implicant rows and the corresponding min term columns.The min terms 2 and 6 are
covered only by one prime implicant YZ’. So, it is an essential prime implicant. This will be part of simplified
Boolean function.

Now, remove this prime implicant row and the corresponding min term columns. The reduced prime
implicant table is shown below.

Min terms / Prime
Implicants

8 9 11 15

WX’ 1 1 1

WY 1 1

ALL COPYRIGHTS 2024 RESERVED BY: GRADAMIC

DIGITAL ELECTRONICS / DIGITAL SYSTEM DESIGN (BOE 310 / BOE 310H / BOE 410 / BOE 410H)

The min terms 8 and 9 are covered only by one prime implicant WX’. So, it is an essential prime implicant.
This will be part of simplified Boolean function. Now, remove this prime implicant row and the corresponding
min term columns. The reduced prime implicant table is shown below.

Min terms / Prime
Implicants

15

WY 1

The min term 15 is covered only by one prime implicant WY. So, it is an essential prime implicant. This will
be part of simplified Boolean function.

In this example problem, we got three prime implicants and all the three are essential. Therefore,
the simplified Boolean function is

fW,X,Y,Z𝑊,𝑋,𝑌,𝑍 = YZ’ + WX’ + WY.

